

Ahorro de Energía con Inversores y Motores de Alta Eficiencia

"En los momentos de crisis, sólo la imaginación es más importante que el conocimiento"

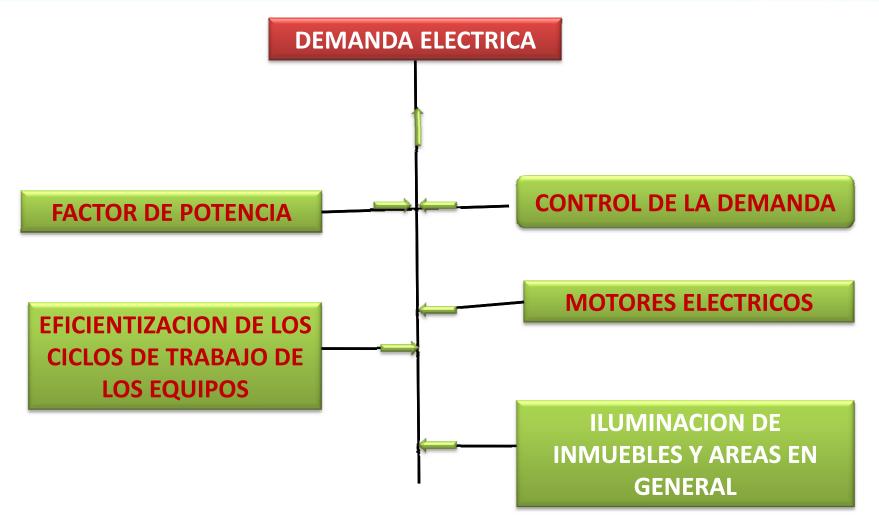
Albert Einstein

Ahorro de Energía usando Inversores y Motores de Alta Eficiencia

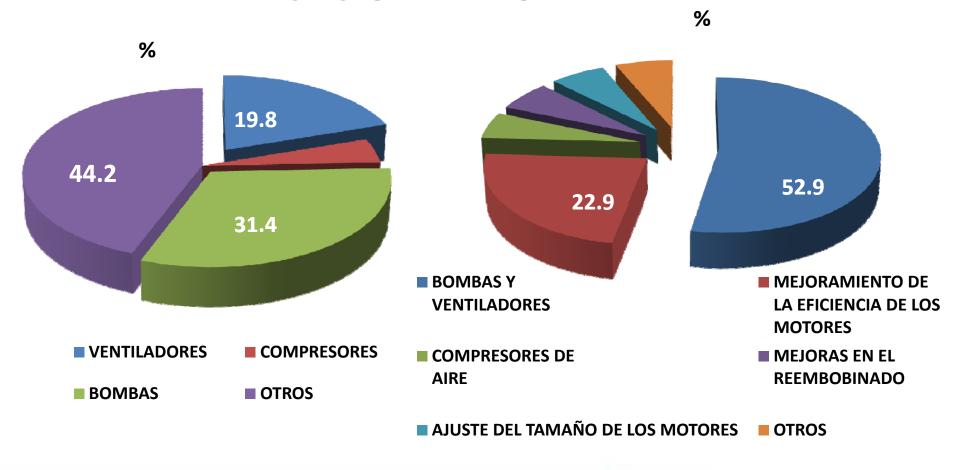
- 1. Ahorro de Energía con Motores de Alta Eficiencia Antecedentes
 - Parte Técnica
 - Consumo y potencial de ahorro
 - ¿Qué es la Eficiencia y cuáles son las Pérdidas?
 - ¿Cómo se construye un motor de Eficiencia Premium?
 - Normas Internacionales y Métodos de medición de Eficiencia

Parte Comercial

- Costo de Operación Vs. Costo Inicial
- Ahorro en Motores y Variadores de Frecuencia
- Plan de Adminsitración de Motores
- 1. Historias Exitosas
- 2. Uso del BE\$T
- 3. Preguntas & Respuestas



Aplicaciones diversas en diferentes tipos de Industrias

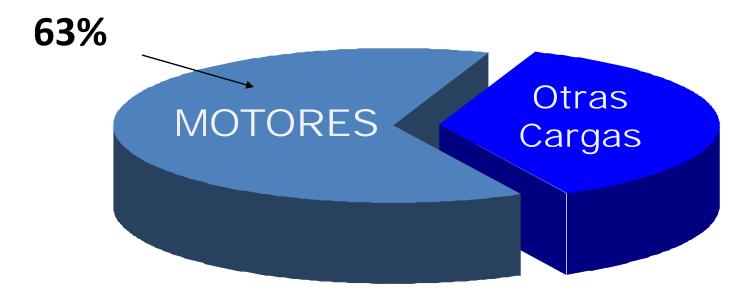

CONSUMOS TIPICOS DE UNA PLANTA DE FABRICACION DE PULPA Y PAPEL

PR	ODUCTO	KWH/ TON
1.	Pulpa fabricada por molienda de madera	1250 - 1350
2.	Pulpa fabricada por proceso químico	300 - 500
3.	Mezcla de procesos 1 y 2	1050 - 1150
4.	Molino de papel; papel periódico	450 - 700
5.	Molino de papel; proceso químico	600 - 1000
6.	Molino integrado pulpa y papel; papel periódico	1550 - 1900
7.	Molino integrado pulpa y papel; proceso químico	900 - 1550

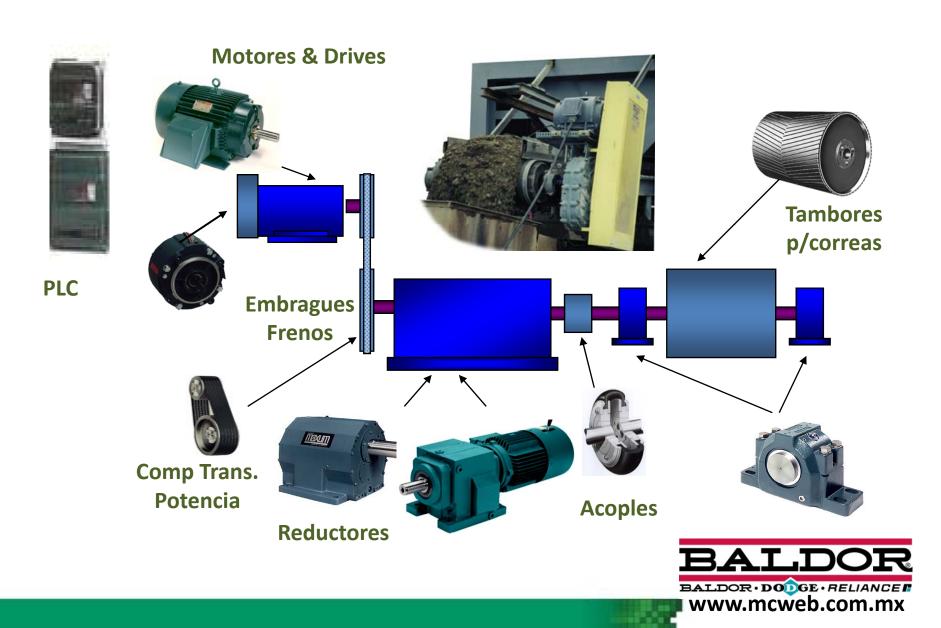
CONSUMOS TIPICOS DE UNA PLANTA DE FABRICACION DE PULPA Y PAPEL

Consumo de Energía en Algunas Industrias

% DE CARGA CONSUMIDA POR MOTORES					
IND. MINERIA	93%				
IND. PETROLEO / REFINERIA	92%				
IND. CELULOSA	90%				
IND. ALIMENTOS	86%				


"El potencial ahorro energético estimado en sistemas con motores eléctricos es del 18%" de acuerdo al Departamento de Energía de los Estados Unidos

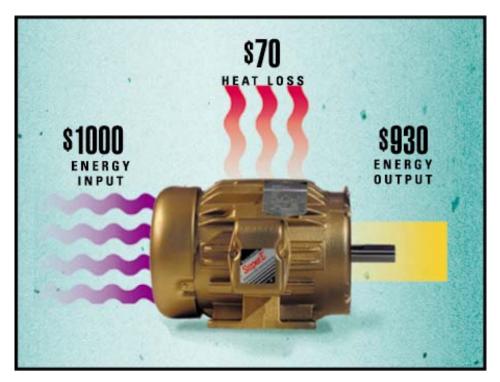
Consumo de Motores Eléctricos en la Industria



Los motores eléctricos consumen aproximadamente el 63% de la electricidad utilizada por la industria

Fuente: U.S. Department of Energy, 2002

¿Qué es la Eficiencia?


¿Cuáles son las Pérdidas que Ocurren en un Motor Eléctrico?

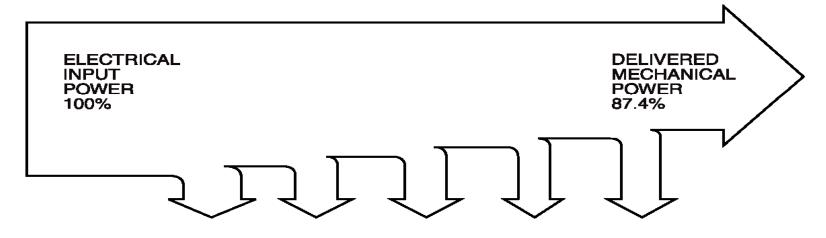
¿Qué es la Eficiencia?

"La eficiencia del motor eléctrico, es la potencia mecánica utilizable de salida dividida entre la potencia eléctrica de entrada"

En otras palabras:

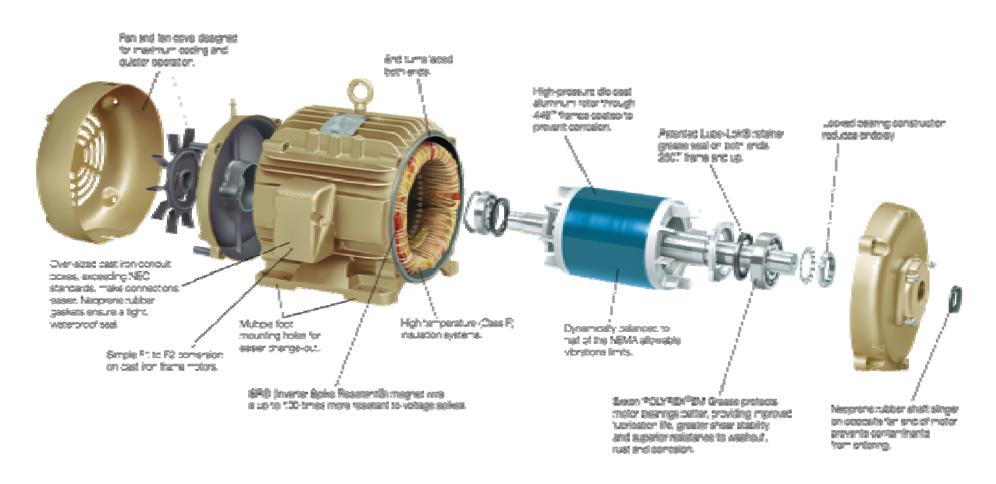
La eficiencia significa que tan bien puede un motor convertir la energía eléctrica de entrada en trabajo mecánico provechoso en su eje de salida.

Diferentes Tipos de Pérdidas de Energía en un Motor Eléctrico

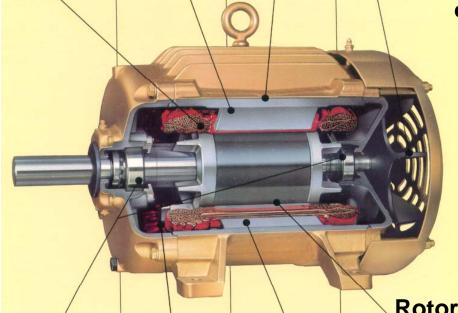

- Pérdidas en la <u>Resistencia del Estator</u> (I²R_{Estator}) Pérdida de corriente en los devanados
- Pérdidas en la <u>Resistencia del Rotor</u> (I²R_{Rotor}) Pérdidas de corriente en los anillos terminales y barras del rotor
- Pérdidas en el <u>Núcleo Magnético</u> (Histérisis y Corrientes de Eddy) –
 Pérdidas magnéticas en los laminados, pérdidas por corrientes parásitas y por inductancia
- Pérdidas por <u>Fricción y Ventilación</u> resistencia mecánica en los rodamientos y los ventiladores de enfriamiento
- Pérdidas por <u>Dispersión de Carga</u> en inglés "Stray Load Losses" Pérdidas varias no fácilmente identificables

Análisis de Pérdidas en un Motor Eléctrico Motor de 15HP, 4 polos, trifásico...

	STATOR RES. LOSS	ROTOR RES. LOSS	CORE LOSS	FRICTION & WINDAGE LOSS	STRAY LOAD LOSS	TOTAL
PERCENT OF LOSSES	30%	20%	19%	13%	18%	100%
PERCENT OF INPUT	3.8%	2.5%	2.4%	1.6%	2.3%	12.6%



¿Cómo se Construye un Motor de Alta Eficiencia?


Mejor grado de Laminas De Acero (C4,C5,C6) vs. C3

[disminución de pérdidas en el acero de 4 wpl a < 2wpl (Watts por libra)]
Bajas perdidas y resistente a la degradación por quemadura 400C (EASA)... nuevos aceros buenos hasta 480C

Mayor cantidad de material activo (cobre y Láminas de acero)

Simetría y balance Perfectos (niveles de vibración más bajos)

Rodamientos Anti-fricción (ODE más pequeño)

Embobinados con rango de 200°C resistentes a la humedad (ISR® wire)

Ventilador aerodinámico de polipropileno – más pequeño

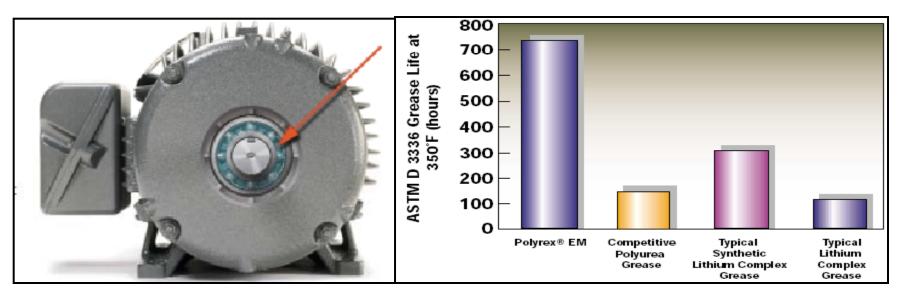
Métodos y tolerancias más estrictos

Distancia mínima de entre-hierro

Rotor con laminación de acero al silicio e inyección de aluminio a la alta presión.

Algunos Beneficios Adicionales de los Motores NEMA Premium

- Menos pérdidas resulta en un motor menos caliente
 - Por cada 10ºC de reducción en temperatura, la vida útil del aislamiento del motor se duplica
 - Nos permite el uso con variadores de velocidad
 - Fabricados con tolerancias más precisas
 - Mejor balanceo/ vida de los rodamientos más larga



Lubricación – Polyrex[®] Exxon-Mobile

GRASA RECOMENDADA: Polyrex® EM.

- Otros equivalentes: Texaco Polystar, Rykon Premium # 2, Penzoil Pen 2 Lube y Chevron SRI
- Para muy bajas temperaturas se recomienda Grasa Aeroshell # 7
- Limpiar bien los rodamientos antes de añadir, no se recomienda mezclar diferentes tipos de grasa

EXXON-MOBIL Product Data Sheet DG-3C, 6/15/99.

¿Se Puede Aumentar la Eficiencia de un Motor Instalado ?

La eficiencia de un motor es determinada cuando este es diseñado y fabricado.

La misma no puede ser aumentada en campo.

¿Cómo los identificamos?

- Super Eficiente
- Alta Eficiencia
- Eficiencia Premium
- Premium Efficient
- Eficiencia Mejorada
- Motor Ahorrador de Energía
- Eficiencias Eff2 y Eff1
- Top Premium Efficient
- Ultra Alta Eficiencia
- Nema Premium
- IE2, IE3 (2010/2011)

Normas Internacionales y Métodos de Medición de Eficiencia



Métodos de Medición de Eficiencia

Norma	Método de Medición de Eficiencia	Notas
NEMA	IEEE112, Método B-Dinamómetro CSA C390-98* *Canadian Standard Association	Se miden Todas las pérdidas
IEC	IEC 60034-2:1996; IEC 61972 (Publicación temporal)	Tendencia a sobre estimar eficiencia de motores ya que no se miden todas las perdidas
	En el 2007 IEC publico el IEC 60034-2-1	Similar a la IEEE112B
	MEPS 2009 - IEC 60034-30:2008	Se usará para para eficiencias IE2, IE3
	BALIBOR	Esta siendo probado en el 2009, Se espera su uso en Europa y USA 2011

BALDOR·DODGE·RELIANCE .

WWW.mcweb.com.mx 25

Normas Internacionales de Eficiencia

+

Norma	Eficiencia Estándar	Alta Eficiencia		Eficiencia "NEMA Premium"
NEMA	MG1-1987 Prohibido en USA	EPAct 92 (1997)	IEEE841- 2001	NEMA Premium (NEMA & CEE) NEMA MG1-2003 EPAct 2005 Energy Independence and
				Security Act of 2007 (EISA) Dec 19, 2010
IEC CEMEP-EU - 1999 (Comité Europeo de Fabricantes de Máquinas Eléctricas y Electrónica de Potencia) IEC 60034-2	EFF3 - Descontinu ado EFF2 – Eficiencia Estándar	EFF1 – Alta Eficiencia		
MEPS (Feb-2009) (Minimum Efficiency Performance Standards) IEC 60034-30	IE1	IE2		IE3 (USA 2011)

NOTA: Es obligatorio publicar la eficiencia mínima en la placa de datos del n No publicarse es sinónimo de incumplimiento.

BALDOR · DODGE · RELIANCE P WWW.mcweb.com.mx 26

Tamañ	o del M	Eficien	cia		
HP	kW	IEEE 112B / C390-98	IEC 34-2	JEC-37	
1	0.75	76.8	78.8	79.6	
2	1.5	81.1	83.1	83.8	
3	2.2	81.4	83.4	84.1	
5	3.7	83.9	85.9	86.5	
7.5	5.5	84.8	86.8	87.3	
10	7.5	85.6	87.6	88.1	
15	11	87.4	89.4	89.9	
20	15	88.3	90.3	90.7	
25	19	88.9	90.4	90.8	
30	22	89.8	91.3	91.7	
40	30	90.4	91.9	92.3	
50	37	91.0	92.0	92.4	
60	45	91.5	92.5	92.8	
75	55	92.0	93.0	93.3	
100	75	92.0	93.0	93.3	
125	95	92.2	92.7	93.0	
150	110	92.8	93.3	93.6	
200	150	93.8	94.3	94.6	
Source: ERM 1999					

Valores aproximados de los niveles de eficiencias de un mismo motor medido bajo 3 métodos diferentes

Energy Policy Act (EPAct 1992) obligatorio a partir de 1997

		NOMI	IINAL FULL-LOAD EFFICIENCY				
MOTOR	OPEN MOTORS			ENCLOSED MOTORS			
HORSEPOWER	6	4	2	6	4	2	
	POLE	POLE	POLE	POLE	POLE	POLE	
1	80.0	82.5		80.0	82.5	75.5	
1.5	84.0	84.0	82.5	85.5	84.0	82.5	
2	85.5	84.0	84.0	86.5	84.0	84.0	
3	86.5	86.5	84.0	87.5	87.5	85.5	
5	87.5	87.5	85.5	87.5	87.5	87.5	
7.5	88.5	88.5	87.5	89.5	89.5	88.5	
10	90.2	89.5	88.5	89.5	89.5	89.5	
15	90.2	91.0	89.5	90.2	91.0	90.2	
20	91.0	91.0	90.2	90.2	91.0	90.2	
25	91.7	91.7	91.0	91.7	92.4	91.0	
30	92.4	92.4	91.0	91.7	92.4	91.0	
40	93.0	93.0	91.7	93.0	93.0	91.7	
50	93.0	93.0	92.4	93.0	93.0	92.4	
60	93.6	93.6	93.0	93.6	93.6	93.0	
75	93.6	94.1	93.0	93.6	94.1	93.0	
100	94.1	94.1	93.0	94.1	94.5	93.6	
125	94.1	94.5	93.6	94.1	94.5	94.5	
150	94.5	95.0	93.6	95.0	95.0	94.5	
200	94.5	95.0	94.5	95.0	95.0	95.0	

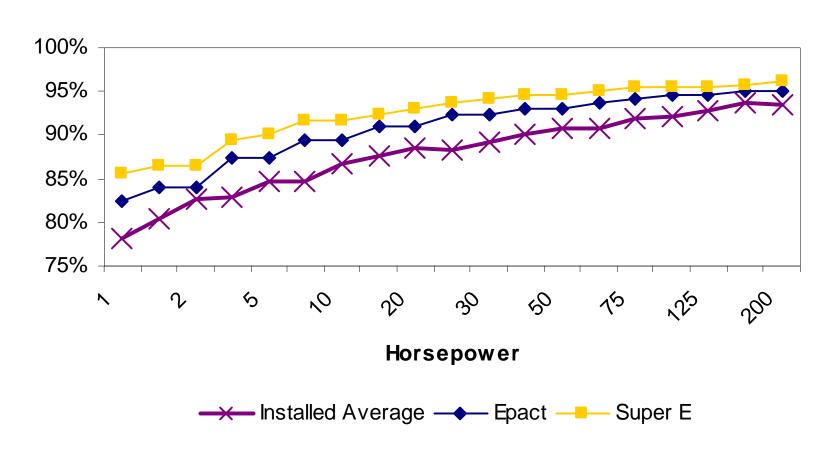
The law's requirements for 1 to 200 horsepower AC motors effective October 24, 1997

Motores de Alta Eficiencia

Eficiencia NEMA Premium

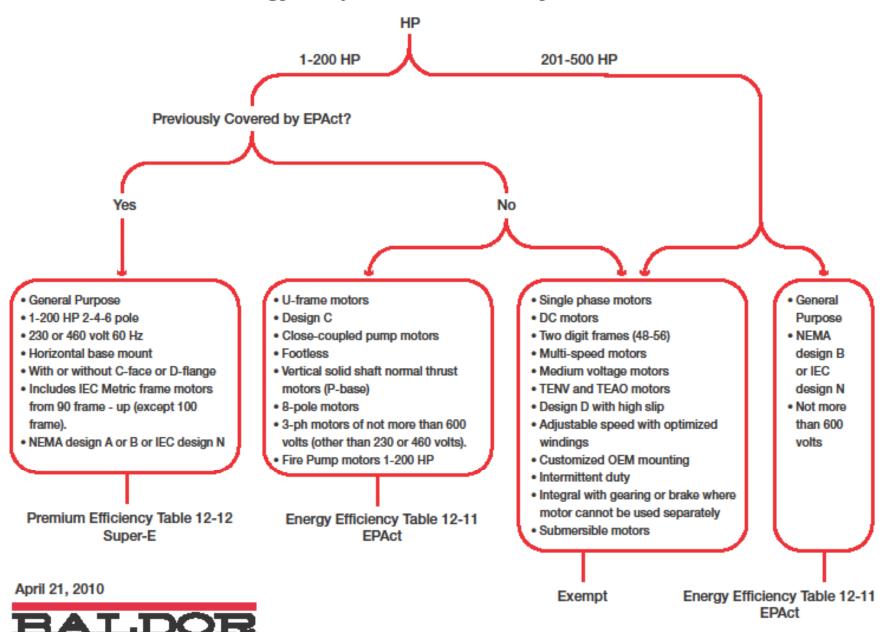
	2 POLE		4 POLE		6 POLE	
HP	Nom Eff	Min Eff	Nom Eff	Min Eff	Nom Eff	Min Eff
1	77.0	74.0	85.5	82.6	82.5	80.0
1.5	84.0	81.5	86.5	84.0	87.5	85.5
2	85.5	82.5	86.5	84.0	88.5	86.5
3	88.5	84.0	89.5	87.5	89.5	87.5
5	88.5	86.5	89.5	87.5	89.5	87.5
7.5	89.5	87.5	91.7	90.2	91.0	89.5
10	90.2	88.5	91.7	90.2	91.0	89.5
15	91.0	89.5	92.4	91.0	91.7	90.2
20	91.0	89.5	93.0	91.7	91.7	90.2
25	91.7	90.2	93.6	92.4	93.0	91.7
30	91.7	90.2	93.6	92.4	93.0	91.7
40	92.4	91.0	94.1	93.0	94.1	93.0
50	93.0	91.7	94.5	93.6	94.1	93.0
60	93.6	92.4	95.0	94.1	94.5	93.6
75	93.6	92.4	95.4	94.5	94.5	93.6
100	94.1	93.0	95.4	94.5	95.0	94.1
125	95.0	94.1	95.4	94.5	95.0	94.1
150	95.0	94.1	95.8	95.0	95.8	95.0
200	95.4	94.5	96.2	95.4	95.8	95.0
250	95.8	95.0	96.2	95.4	95.8	95.0
300	95.8	95.0	96.2	95.4	95.8	96.0
350	95.8	95.0	96.2	95.4	95.8	95.0
400	95.8	95.0	96.2	95.4	95.8	95.0
450	95.8	95.0	96.2	95.4	95.8	95.
500	95.8	95.0	96.2	95.4	95.8	95.

2001


NEMA MG1-2003

BALDOR

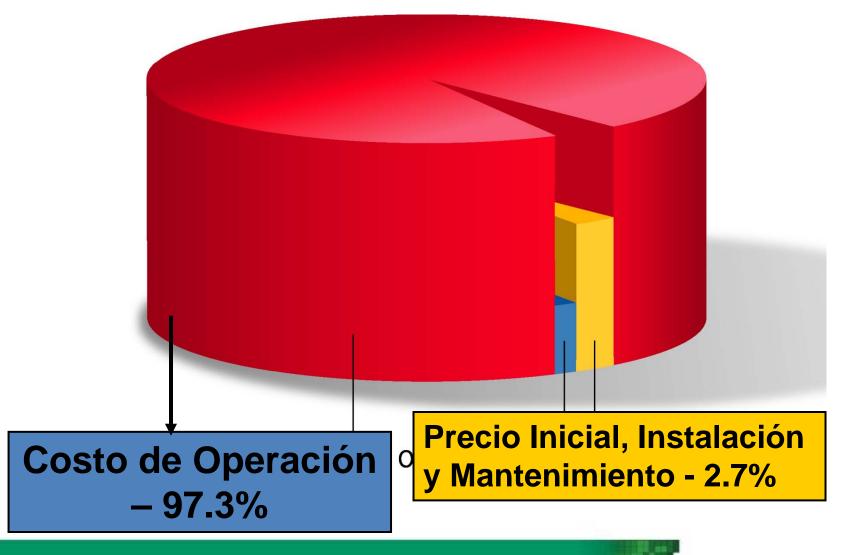
Comparación de Eficiencia en Motores



Standard-E (EPAct) Vs. Super-E

HP	Promedio de Eficiencia Motores Instalados	Standard-E Eficiencia EPAct	Super –E Eficiencia NEMA Premium
1	77.5	82.5	85.5
10	82.2	89.5	91.7
50	89.0	93.0	94.5
100	89.3	94.5	95.4

Energy Independence & Security Act of 2007


Cálculos de Ahorro Energético en Motores de Alta Eficiencia

Costo de Operación Vs. Costo Inicial

Costo de Operación Vs. Precio de Compra

Precio de compra			
Uso anual			
Eficiencia			
Gas/Costo de energía			
Costo de operación anual			
Costo de operación como			
%del precio de compra			

Automóvil	Motor 60HP
\$ 250,000	\$ 45,500
20,000 kms	8,760 hrs.
12 kms/lt	93.6%
\$11.00 /litro	\$ 1.20 kWh
\$18,333/año	\$502,690/año
7.3 %	1105%

Regla General

Cuesta aproximadamente \$21.00 al día por HP operar un motor uso continuo a \$ 1.20 kWh

25 HP = \$525.00 al día \$15,750.00 al mes $$\frac{$14,500.00}{}$

\$189,000.00 al año

10 HP = \$210.00 al día \$6,300.00 al mes \$75,600.00 al año

\$7,500.00

¿Cuánto Ahorran los Motores de Eficiencia Premium Super-E?

	Ahorro		
	ecuperación		
<u>HP</u>	<u>Super-E</u> <u>er</u>	<u>Meses</u>	
5	\$3,800	12	
10	\$6,120	12	
25	\$12,150	14	
50	\$18,900	16	
100	\$31,920	18	
200	\$61,250	18	

 Tiempo de recuperación del costo de un motor nuevo cuando un motor bueno instalado es cambiado por uno Super-E

CONFIABILIDAD	Motor Antiguo	Motor Nuevo
GASTO DE MANTENIEMIENTO		
Numero de rebobinadas por año	1	0
Rebobinado (\$)	2000	0
Cambio de Rodamiento (\$)	200	0
Cambio de Grasa (\$)	50	0
Horas Hombre total del trabajo (Hr.)	72	0
Costo H/H (\$)	6.82	0
COSTO MANTENIMIENTO (\$)	2,740.91	0
COSTO POR PARADA DE PLANTA NO PLANIFICADA		
Cantidad de Producc/H (unidades)	26000	26000
Costo por unidad	0.2	0.2
Números de Paro de planta por año	1	0
Tiempo de paro de planta(Hr.)	1	0
COSTO POR PARADA DE PLANTA POR HORA (\$)	5,200.00	0
AHORRO EN ENERGIA		
Costo por KW/H(\$)	0.06	0.06
Numero de Rebobinadas	1	0
Años de antigüedad	10	0
Horas de trabajo por dia(Hr.)	8760	8760
Porcentaje de Carga(%)	100	100
Consumo de Operación Anual del Motor (\$)	9,802.44	8,220.08
AHORRO ANUAL DE ENREGIA (\$)	0	1,582.36
DATOS DEL MOTOR		
Potencia (HP)	20	20
Voltaje(V)	440	440
Velocidad(RPM)	1750	1750
Eficiencia Motor Antiguo (%)	80	95.4
Frecuencia(Hz)	60	60
Precio Motor NEMA PREMIUN(\$)	0	2,350.00
COSTO ANUAL DE OPERACIÓN MOTOR (\$)	\$ 17,743.35	\$ 8,220.08
COSTO COMPRA MOTOR NUEVO		\$ 2,350.00
AHORRO NETO USANDO MOTOR NEMA PREMIUM		\$ 7,173.27
RETORNO DE LA INVERSION (MESES)		3.93

TCO - Total Cost of **Ownership** (Costo Total de **Propiedad)**

El cliente tiene:

- 1 Parada no planificada x año
- 1 Rebobinada x año

Cálculo de Costos de Operación

Costo Anual = <u>HP x Horas de operación anual x 0.746 x \$/kWh</u> Eficiencia de Placa (Decimal)

El programa "Baldor Energy Savings Tool (BE\$T)" utiliza:

kWh = HP x 0.746 kW / HP x Horas Anuales x % Carga del Motor Eficiencia de Placa

Costo de Operación = kWh x Costo de la electricidad / kWh

Recuperación ("Payback") = <u>kWh Motor Viejo</u> – <u>kWh Motor Nuevo</u> Costo Motor Nuevo (menos costo de rebobinar) – Costo Motor Viejo

Cambie el Paradigma de Compras

 De capacidad de decisión y enseñe a sus compradores a evaluar la compra de motores en función de sus costos totales y NO basados solo el el costo inicial.

 Persiga una mejora de procesos con indicadores que muestren su consumo energético en base a su producción o resultados.

Los costos de energía deben ser administrados


- Un 90% de las desiciones sobre motores se tomal a nivel piso.
- Solo un 11% de las empresas tiene por escrito las especificaciones de sus motores.
- Solo un 12% de las compañias tienen por escrito sus políticas de rebobinado.
- 24% de las empresas no saben exáctamente en que gastan su energía.

Genere un ciclo de mejora contínua

Comprométase
Fije Metas
Haga un plan de acción
Implemente el plan
Verifiquelo
Reconozca logros
Repita el ciclo

Maintenance and Reliability Technology Summit 2008 - April 14-17, 2008

Ahorros Adicionales de Energía

Reemplace motores monofásicos con trifásicos

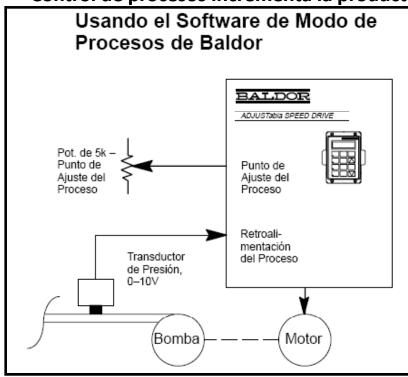
Motor monofásico típico 80.0%

– Monofásico Premium 86.5%

Trifásico Típico87.5%

Trifásico NEMA Premium[®] 90.2%

Siempre utilice motores trifásicos cuando sea posible



Obtenga Mayor Ahorro Usando Variadores de Frecuencia

- Agregue variadores de velocidad ajustable en aplicaciones de bombas y ventiladores
 - Control de procesos incrementa la productividad

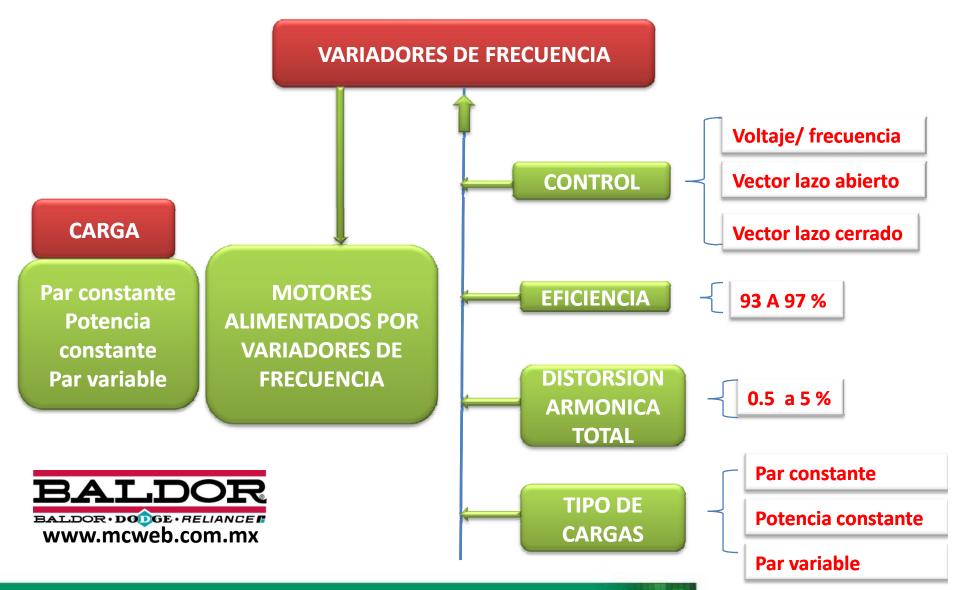


Photo courtesy of Goulds Pumps

Aplicaciones de Torque Variable

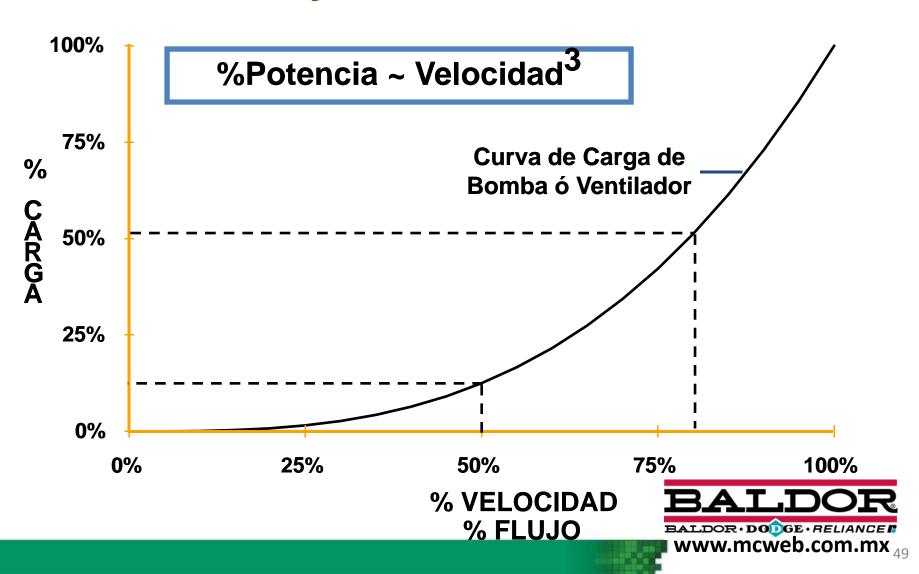
Bombas: Válvulas vs. Regulación de

Velocidad

Ventilación: Ventanillas y Compuertas vs.

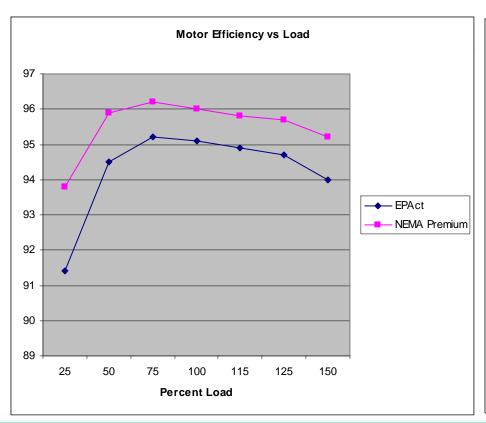
Regulación de Velocidad

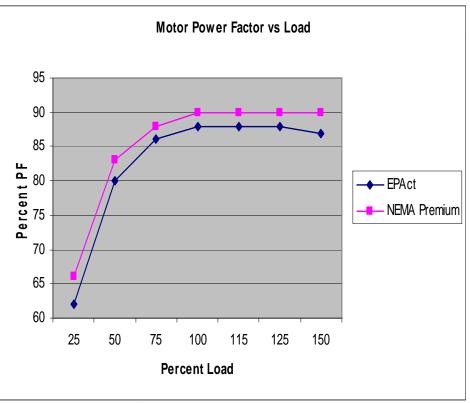
POTENCIAL DE AHORRO VARIADORES DE FRECUENCIA "Cargas de Torque Variables"


20-25% 20-25% 25-35% 30-35%
30-50%

Source: Wisconsin Center for Demand-Side Research

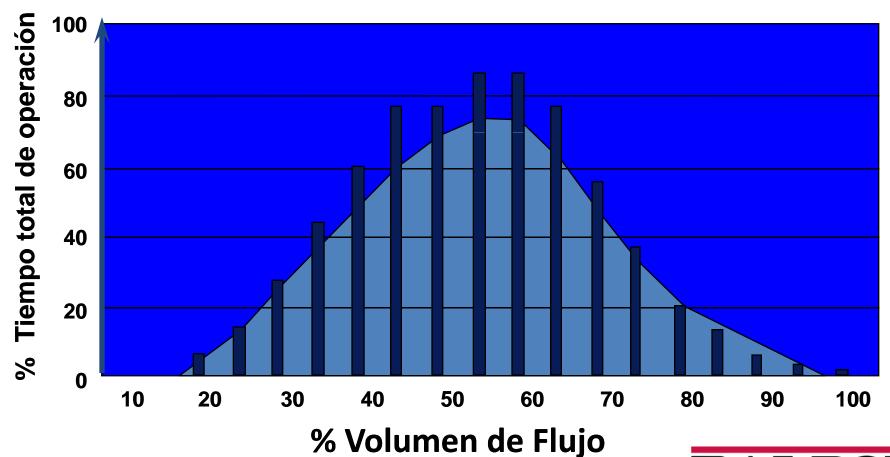
Ley de Afinidad



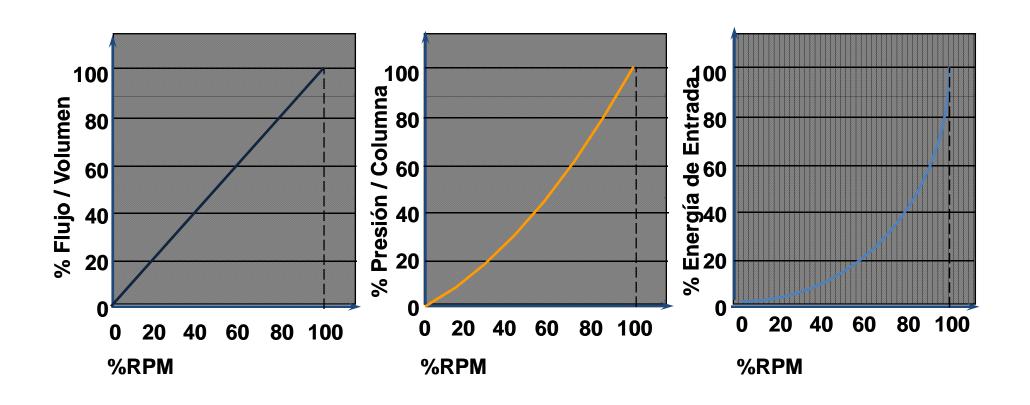


¿Cómo varía la eficiencia y el FP con respecto al porcentaje de Carga? • Seleccione el tamaño correcto para la aplicación

- - Motores sobredimensionados tienen un factor de potencia y eficiencia más baja
 - La eficiencia más alta se logra entre el 75 85% de la carga



Ciclo de trabajo típico de una ventilador centrífugo


Fuente: Electric Power Research Institute

BALDOR

BALDOR · DODGE · RELIANCE F

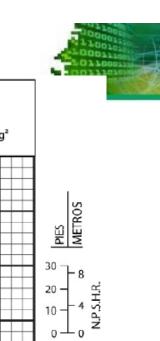
WWW.mcweb.com.mx

centrifugas

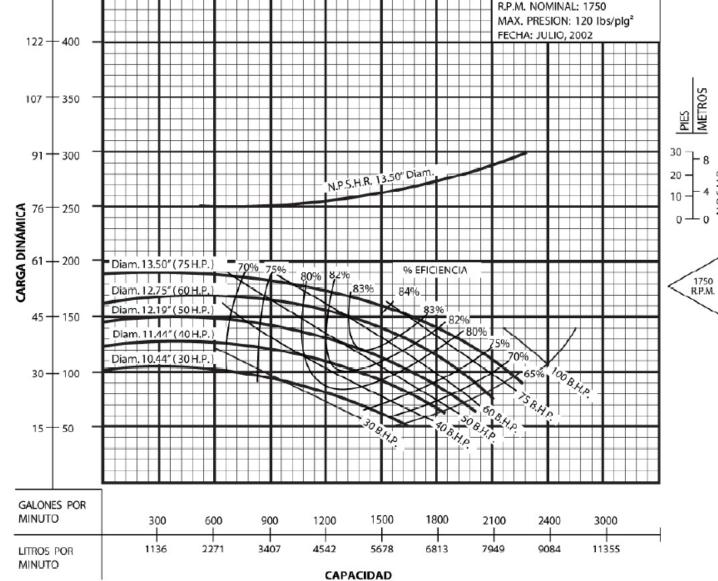
www.mcweb.com?mx

Leyes de afinidad para cargas centrifugas

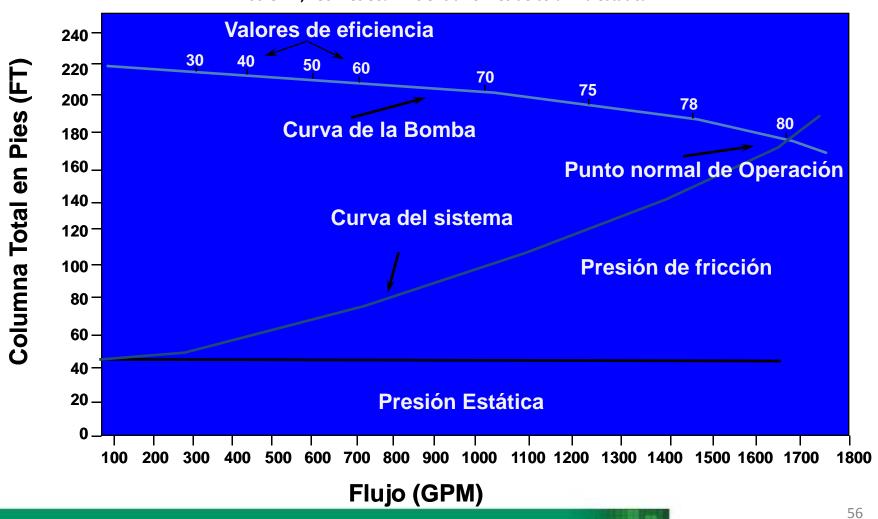
Velocidad	Volumen	Presión/ Columna	Potencia Requerida
100%	100%	100%	100%
90%	90%	81%	73%
80%	80%	64%	51%
70%	70%	49%	34%
60%	60%	36%	22%
50%	50%	25%	13%
40%	40%	16%	6%
30%	30%	9%	3%

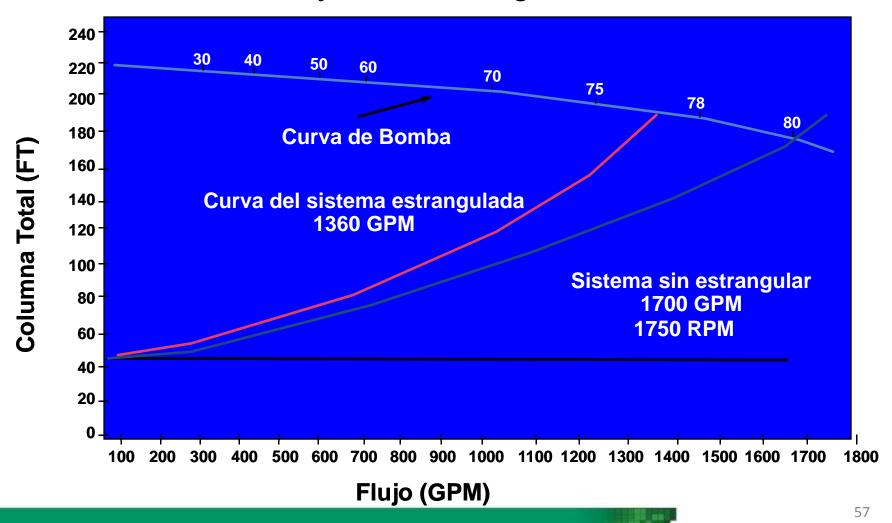

La reducción de flujo puede ser hecho de varias maneras:

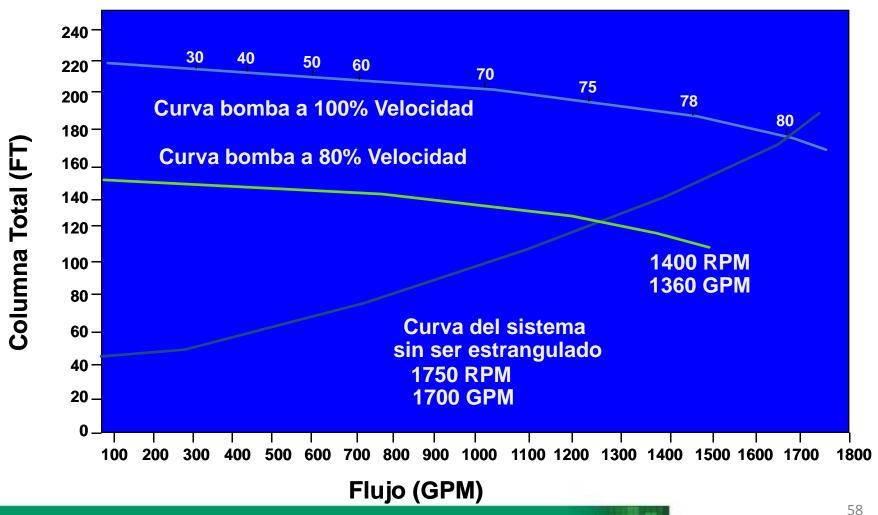
- Cambiando el motor y/o equipo
 - Poleas de las bombas
 - Velocidad base del motor
 - Propela de la bomba
- Persianas de entrada (Dampers)
- Válvulas de las bombas
- Variador De Frecuencia (VDF) Es el único método que toma ventaja de las leyes de afinidad

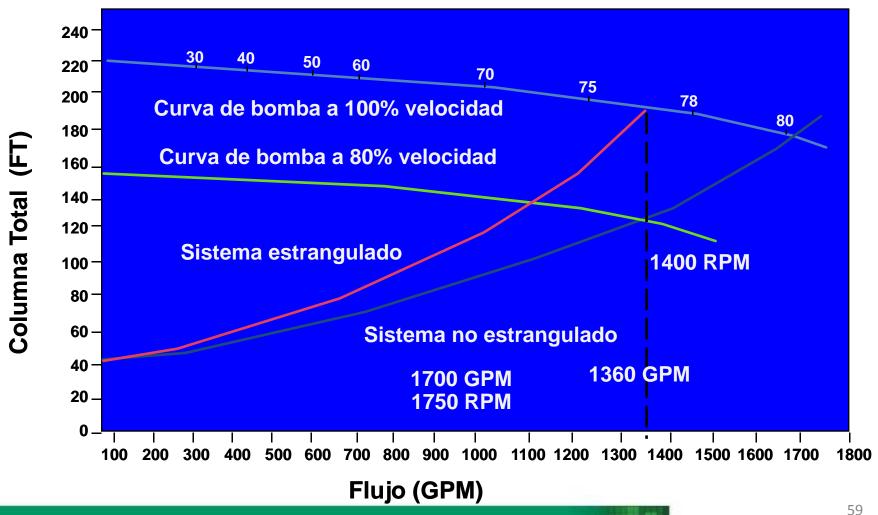

www.mcweb.com#mx

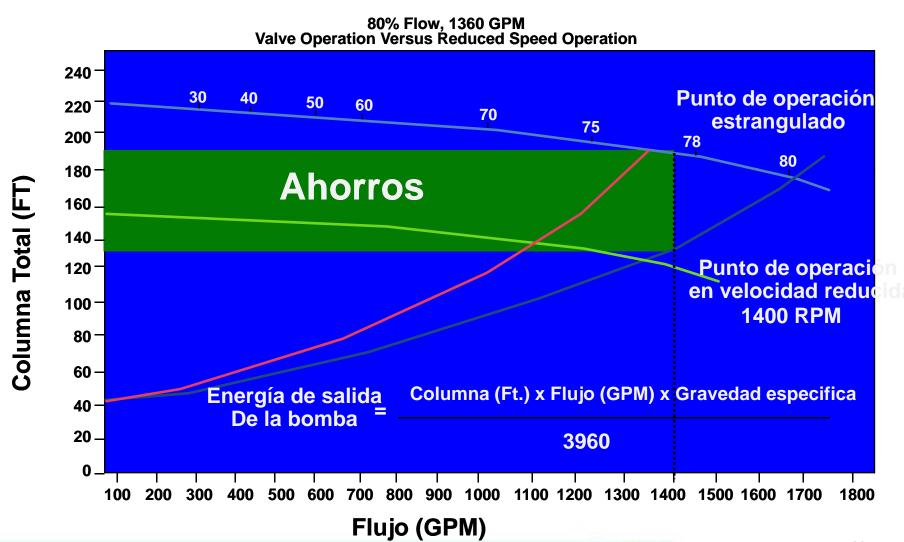
METROS PIES


MODELO: IA6BJM TAMAÑO: 8 X 6 X 13 B

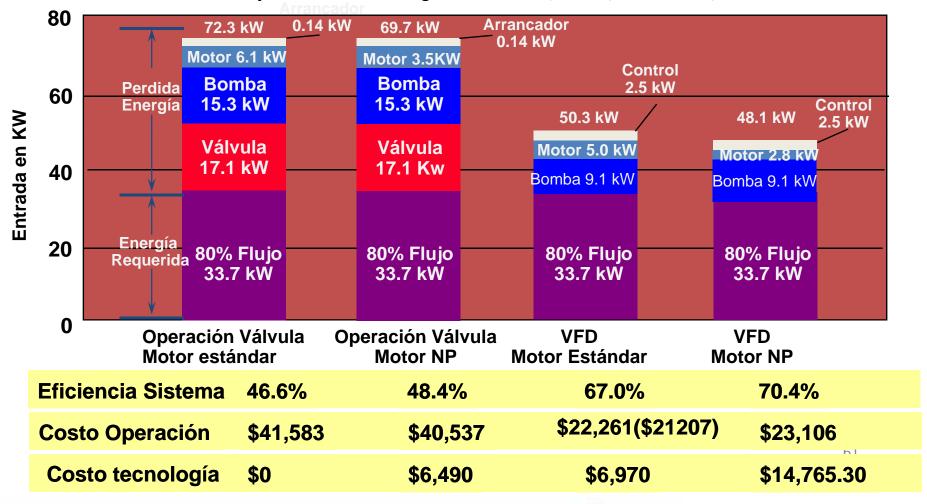

1700 GPM, 180 Pies 80% Eficiencia 45 Pies de columna estática


80% Flujo, válvula estrangulada al 25%


Curva de bomba a 80% de velocidad



Curva de bomba a 80% de velocidad



Potenciales de ahorro de VDF

Aplicación típica de una bomba de 100 HP 80% Flujo con válvula estrangulada al 25% 4,320Hrs/Año @\$0.12/Kwh

Potenciales de ahorro de VDF

Operación Motor estár		Operación Válvula Motor NP			
Eficiencia Sistema	46.6%	48.4%	67.0%	70.4%	
Costo Operación	\$41,583	\$40,537	\$22,261(\$21,207)	\$23,106	
Costo tecnología	\$0	\$6,490	\$6,690	\$14,765	

Ahorros x año \$18,477 (\$41,583-\$23,106

.... trabajando solo 12 horas!!!

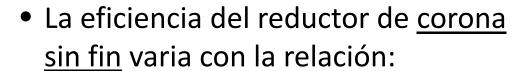
Ahorros x año \$36,954 (24 horas)

¿Donde los VDF pueden ser mas benéficos?

- Un sistema totalmente de fricción (Sin columna estática)
- En sistemas donde la válvula de control es constantemente modulada
- Bombas en operación ya sea en paralelo o serie
- Sistemas de bombeo con múltiples puntos de diseño
- Sistemas con modulación de válvula bypass
- Torres de enfriamiento que arrancan y paran frecuentemente

Ahorro con Reductores Quantis

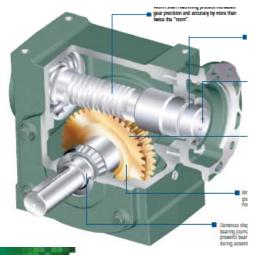
Incremente la Eficiencia de sus Reductores


Eficiencia = Capacidad de transmitir par

 Un engrane <u>helicoidal</u> tiene 98% de eficiencia /etapa:

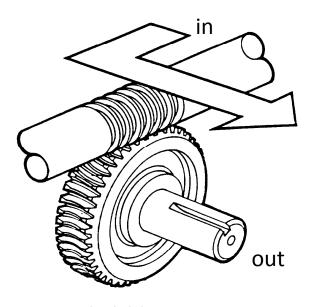
simple = 98%

doble = 96%


triple = 94%

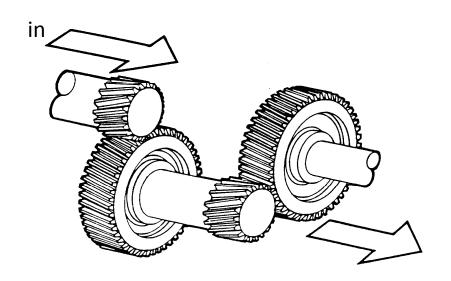
@ 5:1 = 92%

@ 60:1 = 62%

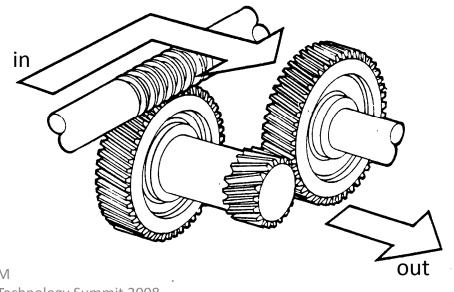


Sin Fin Corona Salida Lateral

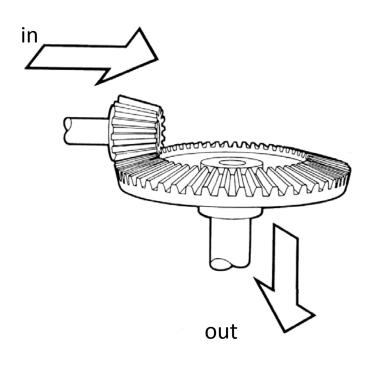
Maintenance and Reliability Technology Summit 2008 -April 14-17, 2008



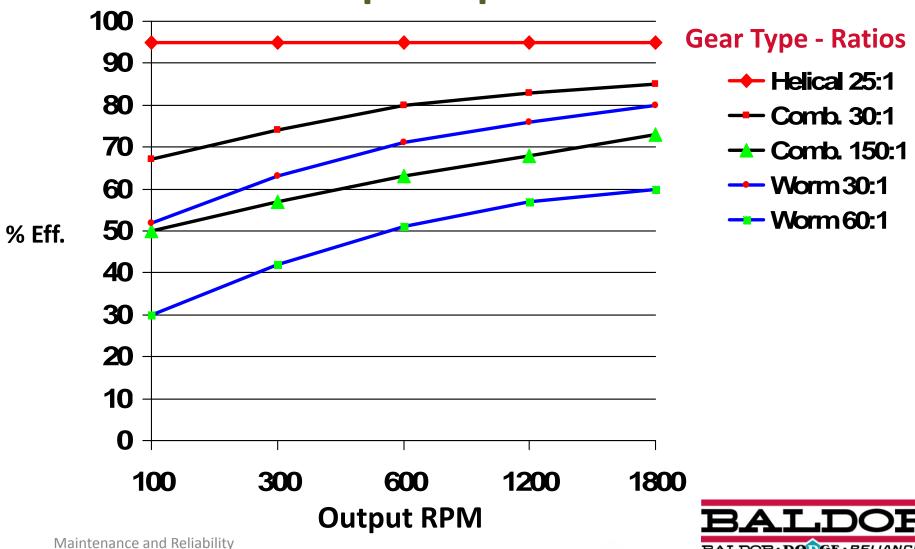
Reductor de Ejes Paralelos



Combinación de Angulo Rector Sin Fin Corona con Paralelos


Technology Summit 2008 -April 14-17, 2008

Angulo recto con Engranes Helicoidales



Eficiencias por Tipos de Reductores

Technology Summit 2008

BALDOR · DODGE · RELIANCE www.mcweb.com.mx

Incremente la Eficiencia de sur Reductores

					AHOMMO		_	AHOMMO	
		EFICIENCIA	EFICIENCIA DEL		ANUAL	EFICIENCI	DEL	ANUAL	AHORRO ANUAL EN
		DEL	REDUCTOR		DEL	Α	MOTOR	DEL	USdLLS DEL
	RELACION	REDUCTOR	CORONA -		REDUCTO	DEL	DE	MOTOR	CONJUNTO
	DE	RHB	SIN FIN O SIN	AHORRO	R	MOTOR	EFICIENCI	E.	REDUCTOR
	REDUCCIO	HELICOIDAL	FIN	EN	RHB	ESTANDA	Α	PREMIUM	RHB - MOTOR E.
HP	N	CONICO	HELICOIDAL	WATTS	US DLLs	R	PREMIUM	US DLLs	PREMIUM
1/2 @ 1750 RPM	10:1	95%	81%	55	\$40.00	69.0%	84.0%	\$48.00	\$81.00
	40:1	95%	65%	118	\$85.00	69.0%	84.0%	\$48.00	\$118.00
1 @ 1750 RPM	10:1	95%	83%	94	\$68.00	74.0%	86.5%	\$78.00	\$136.00
	40:1	95%	69%	204	\$147.00	74.0%	86.5%	\$78.00	\$203.00
1 1/2 @ 1750 RPM	10:1	95%	86%	106	\$76.00	75.5%	87.5%	\$110.00	\$176.00
	40:1	95%	72%	271	\$195.00	75.5%	87.5%	\$110.00	\$279.00
2 @ 1750 RPM	10:1	95%	87%	126	\$90.00	75.5%	87.5%	\$147.00	\$225.00
	40:1	95%	72%	361	\$260.00	75.5%	87.5%	\$147.00	\$372.00
3 @ 1750 RPM	10:1	95%	88%	165	\$119.00	78.0%	89.5%	\$207.00	\$311.00
	40:1	95%	82%	306	\$221.00	78.0%	89.5%	\$207.00	\$399.00
5 @ 1750 RPM	10:1	95%	90%	196	\$141.00	81.5%	90.2%	\$259.00	\$387.00
	40:1	95%	86%	353	\$254.00	81.5%	90.2%	\$259.00	\$489.00
7 1/2 @ 1750 RPM	10:1	95%	90%	294	\$212.00	83.5%	91.0%	\$332.00	\$527.00
	40:1	95%	88%	412	\$297.00	83.5%	91.0%	\$332.00	\$604.00
10 @ 1750 RPM	10:1	95%	92%	236	\$170.00	84.0%	91.7%	\$451.00	\$606.00
	40:1	95%	88%	550	\$396.00	84.0%	91.7%	\$451.00	\$814.00

El primer paso a seguir para reducir costos de operación de los motores eléctricos y aumentar la confiabilidad de las instalaciones es establecer un "Plan de Administración de Motores"

Datos de Placa:

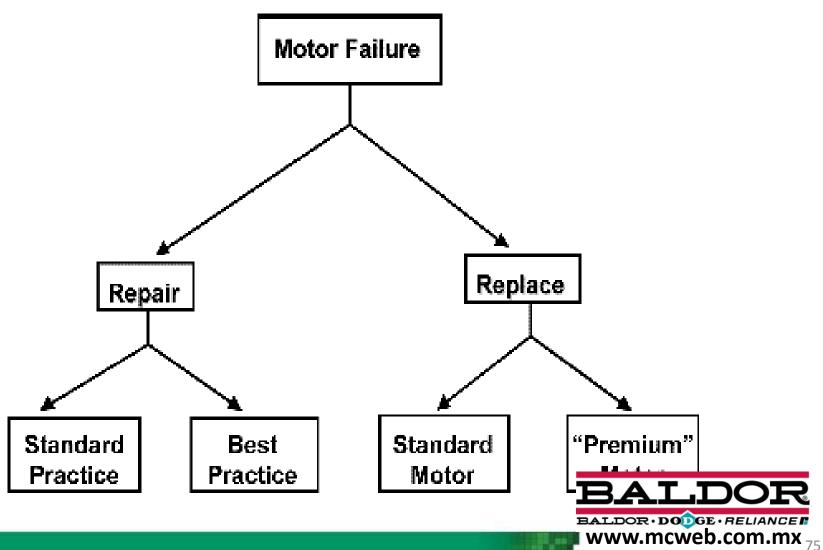
- Potencia (HP o kW)
- Velocidad (RPM)
- Cerramiento
- Voltaje (V)
- Frame y Montaje

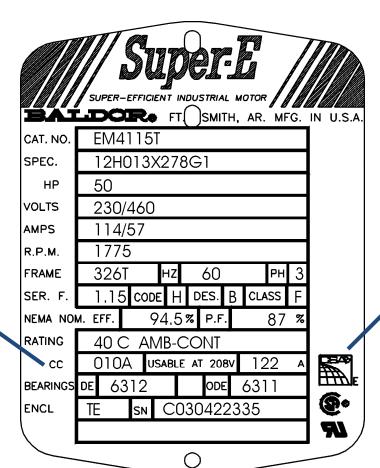
Datos de Operación:

- Ubicación
- Carga en Amps
- Aplicación
- Ciclo de Trabajo
- Eficiencia (%)
- # Rebobinadas
- Edad del Motor
- Metodo de arranque

¿QUÉ MOTORES CALIFICAN PARA SER SUSTITUIDOS POR EQUIPOS DE ALTA EFICIENCIA?

- Motores que fallen en un tiempo corto debido a su aplicación
- Motores de más de 10 años de fabricación (bajas eficiencias)
- Motores que tengan un trabajo continuo la mayor parte del año
- Motores que estén sobredimensionados
- Motores rebobinados
- Motores que fallen donde el costo de reparación sea igual a un porcentaje de uno nuevo (motor + energía ≥ motor nuevo) @ 18 meses





Número de certificación del "National Voluntary Lab Acreditation Program (NAVLAP) indicando que BALDOR cumple con **EPAct**

Este logo indica cumplimiento de Eficiencia Premium de acuerdo a los requerimientos **CSA**

Soporte técnico

Ordenamiento de data sobre base instalada Estudio de retorno usando el Software BE\$T Plan de Gerencia de Motores

- Herramientas para análisis Software BE\$T
- Garantía 2 años Standard-E (Alta Eficiencia)
- Garantía 3 años Súper E (NEMA Premium)
- Garantía 5 años IEEE-841 (NEMA Premium)

Conozca su factura

En baja tensión

2 3 Cuotas mensuales autorizadas

En media tensión

O-M H-M H-MC Cuotas mensuales autorizadas

Con cargos fijos

OMF HMF HMCF Cuotas mensuales autorizadas

En alta tensión

HS HS-L HT HT-L Cuotas

mensuales autorizadas

Con cargos fijos

HSF HS-LF HTF HT-LF Cuotas

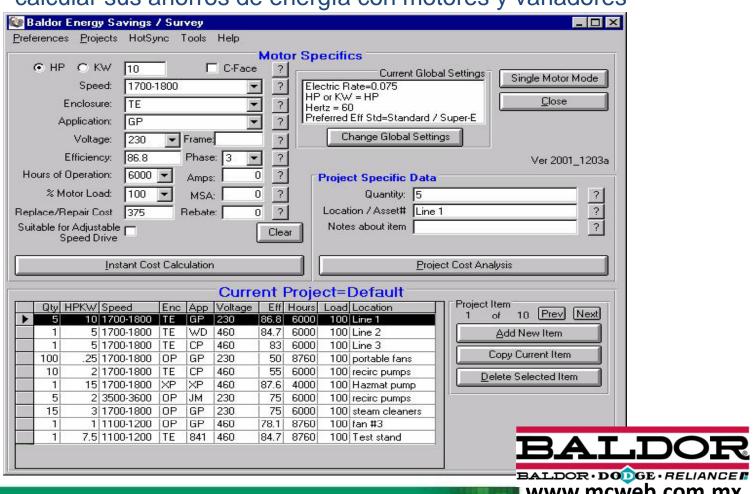
mensuales autorizadas

Servicio de respaldo

HM-R HM-RF HM-RM HS-R HS-

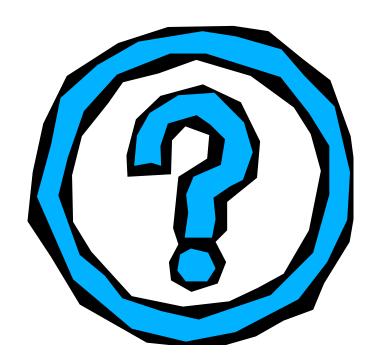
RF HS-RM HT-R HT-RF HT-**RM** Cuotas mensuales autorizadas

Servicio interrumpible I-15 I-30 Cuotas mensuales


autorizadas

Cálculo de Costos de Operación y Ahorros

"Baldor Energy Savings Tool" (BE\$T) es una excelente herramienta para calcular sus ahorros de energía con motores y variadores


"Hay una fuerza motriz más poderosa que el vapor, la electricidad y la energía atómica: la voluntad "

Albert Einstein

¿Preguntas?

¡Estamos a sus ordenes!

Isaac Cárdenas

Motorreductores y Controles SA de CV

isaac@mcweb.com.mx

www.mcweb.com.mx

Tarifa H-M Media Tensión Central

Central										
Demanda										
Facturable (\$/kW)	163.28	163.23	164.19	165.88	167.34	168.38	168.99	168.43 168.94	169.31	171.24
Energía Punta (\$/kWh)	1.7422	1.8119	1.8396	1.8760	1.8631	1.9479	1.9797	2.0003 1.9703	2.0028	2.0068
Energía										
Intermedia (\$/kWh)	0.9493	1.0322	1.0595	1.0923	1.0647	1.1622	1.1985	1.2301 1.1857	1.2251	1.2142
Energía Base (\$/kWh)	0.7935	0.8628	0.8856	0.9131	0.8900	0.9715	1.0018	1.0282 0.9911	1.0240	1.0149